A THEORETICAL STUDY OF NiCN IN THE $^2\Delta$ ELECTRONIC GROUND STATE

TSUNEKO HIRANO, REI OKUDA, and UMPEI NAGASHIMA, Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; PER JENSEN, Theoretische Chemie, Bergische Universität, D-42097 Wuppertal, Germany.

The three-dimensional potential energy surface of $X^2\Delta$ NiCN has been calculated ab initio at the MR-SDCI+Q+E_{c+r}/[Roos ANO (Ni), aug-cc-pVQZ (C, N)] level of theory. The equilibrium geometry derived from this surface is linear with r_e(Ni-C) = 1.814 [1.8292(28), 1.8293(1)] Å and r_e(C-N) = 1.167 [1.1591(29), 1.1590(2)] Å, where the values in brackets are r_0 values for the ground $\Omega = 5/2$ spin-substate determined experimentally by Kingston et al.a and Sheridan et al.b respectively. From the electronic structure given in terms of natural orbitals, and the Mulliken populationc of +0.83 on Ni, we conclude that the Ni-C bond is basically ionic but less ionic than those of FeNC and CoCN. The electron from Ni goes into the Ni-mediated CN σ^* orbital, giving the electron distribution Ni$^+$[(CN)$^-$]. The $3d-\pi^*$ backbonding is not observed. Molecular constants determined from the ab initio potential energy surface by perturbation methods and in variational calculations will be reported: For example, $\omega_1 = 2198$ cm-1, $\omega_2 = 254$ cm-1, and $\omega_3 = 511$ cm-1. A severe Fermi resonance between $2\nu_3$ and ν_2 is expected. A spin-orbit interaction scheme including the ab initio predicted spin-orbit coupling constant $A_{\Delta \Omega} = -613$ cm-1 will be presented.

cComputed at the MR-SDCI/[Wachters+f (Ni), aug-cc-pVTZ (C, N)] level of theory
dcf. the unperturbed $A_{\Omega \Omega}$-value of $-594.2(5)$ cm-1 for $X^2\Delta$ NiH; J. A. Gray, M. Li, T. Nelis, and R. W. Field, J. Chem. Phys., 95, 7164 (1991).