HIGH-RESOLUTION LASER-INDUCED FLUORESCENCE (LIF) SPECTROSCOPY OF THE DEUTERATED ISOTOPOMERS OF THE METHOXY RADICAL

JINJUN LIU, JOHN T. YI and TERRY A. MILLER, Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University, 120 W. 18th Avenue, Columbus, Ohio 43210.

Our high-resolution laser-induced fluorescence (LIF) spectroscopy apparatus has been improved to study the deuterated isotopomers of the methoxy radical under jet-cooled conditions (T \sim 2K). Doppler-free absorption spectra of iodine molecule were recorded simultaneously for absolute calibration, while relative calibration was done using the fringes of a new etalon. The spectral resolution (FWHM) for methoxy was limited to \sim 300MHz by residual Doppler broadening and unresolved hyperfine structure. The center of spectral lines could be determined to \sim 1/5 the FWHM with a comparable absolute accuracy ($1\sigma\sim$ 50MHz). The 3_0^2 and ($6')_0^1$ bands of the $\tilde{A}^2A_1-\tilde{X}^2E_{3/2}$ transition for CHD₂O and CH₂DO have been recorded, as well as the 3_0^2 and 6_0^1 bands for CH₃O and CD₃O. Rotational and fine structure for all bands has been resolved and assigned. Details of the analyses will be presented in the following talks.

^aH. Kato, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule, Japan Society for the Promotion of Science, (2002).