ROVIBRONIC BANDS OF THE $\tilde{A} \leftarrow \tilde{X}$ TRANSITION OF CH₃OO and CD₃OO DETECTED WITH CAVITY RINGDOWN NEAR 1.2 μ M

<u>CHAO-YU CHUNG</u>, Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; CHI-WEN CHENG and YUAN-PERN LEE, Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.

We have recorded several rovibronic bands of the $\tilde{A} \leftarrow \tilde{X}$ transition of CH₃OO and CD₃OO near 1.2 μ m with the cavity ringdown technique. The light source was a Raman-shifted beam from a dye laser pumped with a frequency-doubled Nd:YAG laser. The 7¹₀ band shows partially resolved rovibronic lines which, when coupled with rotational parameters of the lower state determined recently by Endo and coworkers, can be fitted to yield spectral parameters of the upper states: $\nu = 8269.6 \pm 0.5 \text{ cm}^{-1}$, $A' = 1.526 \text{ cm}^{-1}$, $B' = 0.388 \text{ cm}^{-1}$, and $C' = 0.323 \text{ cm}^{-1}$ for CH₃OO, and $\nu = 8195.5 \pm 0.5 \text{ cm}^{-1}$, $A' = 1.169 \text{ cm}^{-1}$, $B' = 0.329 \text{ cm}^{-1}$, and $C' = 0.28 \text{ cm}^{-1}$ for CD₃OO. The vibrational spacing of 886.8 cm⁻¹ for the ν_7 mode of CH₃OO is more precise than a previous report of 896 \pm 9 cm⁻¹ using conventional absorption spectroscopy; this mode is associated with the C–O stretching mode rather than the O–O stretching mode assigned previously. Two additional vibronic bands of CD₃OO were also detected for the first time; tentatively identified vibrational wave numbers of the \tilde{A} state of CD₃OO are 953 (ν_6) and 970 (ν_5) cm⁻¹, consistent with quantum-chemical calculations. Hot bands associated with excitation of the torsional mode were also observed.