Λ -DOUBLING IN HIGH ANGULAR MOMENTUM STATES: THE PURE ROTATIONAL SPECTRUM OF CoF (X³ Φ_i)

<u>M. A. FLORY</u>, P. M. SHERIDAN, M. A. BREWSTER, S. K. McLAMARRAH, L. M. ZIURYS, *Dept. of Chemistry, Dept. of Astronomy, Steward Obsevatory, Univ. of Arizona, Tucson, AZ 85721*; J. M. BROWN, *Physical and Theoretical Chemistry Laboratory, Oxford University, Oxford OX1 3QZ, United Kingdom*; and T. C. STEIMLE, *Dept. of Chemistry and Biochemistry, Arizona State Univ., Tempe, AZ 85287.*

The pure rotational spectrum of CoF (X ${}^{3}\Phi_{i}$) has been recorded in the frequency range 270-650 GHz - the first high-resolution study to include all three spin components ($\Omega = 4$, 3, and 2). CoF was created by reacting cobalt vapor with a mixture of 10% F₂ in He. Fourteen rotational transitions were recorded. A-doubling was observed in both the $\Omega = 3$ (5 MHz separation) and $\Omega = 2$ (100 MHz) spin components, an unexpected result for a Φ state. In addition, the spectrum is further complicated by the presence of hyperfine interactions arising from both Co (I = 7/2) and F (I = 1/2) nuclei. The complete data set has been fit with a Hund case (a) Hamiltonian, and rotational, fine structure, Λ -doubling, and hyperfine parameters have been determined. The observation of Λ -doubling is in contrast to CoCl (X ${}^{3}\Phi_{i}$), where the effect was not observed.