VIBRATIONALLY EXCITED C6H

<u>CARL A. GOTTLIEB</u>, M. C. McCARTHY, and P. THADDEUS, *Harvard-Smithsonian Center for Astrophysics*, 60 Garden Street, Cambridge, MA 02138; Division of Engineering and Applied Sciences, Harvard *University*, 29 Oxford Street, Cambridge, MA 02138..

Following the detection of the linear carbon chain radical C_6H in space, many rotational lines in the $X^2\Pi$ electronic ground state have been observed in a low pressure discharge at millimeter wavelengths^{*a*} and in a supersonic molecular beam at centimeter wavelengths^{*b*}. In the course of a laboratory search for new reactive hydrocarbon molecules with 6 carbon atoms, several series of harmonically related lines with rotational constants near that of C_6H in the ground vibrational state were observed in the millimeter-wave band. On the basis of the close agreement in rotational constants and intensities, two of the series were assigned to ${}^{2}\Sigma$ and ${}^{2}\Delta$ states of a low-lying excited bending vibrational level of C_6H . The standard Hamiltonian with five spectroscopic constants reproduces the observed rotational spectrum of the ${}^{2}\Delta$ state, but several high-order distortion terms in the spin-rotation interaction are needed to reproduce the spectrum of the ${}^{2}\Sigma$ state of C_6H and C_6D . From the measured intensities of the rotational lines it appears that the ${}^{2}\Sigma$ state lies very close to ground but the ${}^{2}\Delta$ state lies much higher in energy. A brief summary of the laboratory spectrum and applications to the astronomical observations will be presented.

^aH. Linnartz, T. Motylewski, O. Vaizert, J. P. Maier, A. J. Apponi, M. C. McCarthy, C. A. Gottlieb, and P. Thaddeus, J. Mol. Spectrosc. <u>197</u>, 1 (1999). ^bM. C. McCarthy and P. Thaddeus, J. Chem. Phys. <u>122</u>, 174308 (2005).