VIBRATIONAL ENERGY DISPOSAL AND THE SPECTATOR MODEL FOR REACTION OF CH3D WITH CI

ROBERT J. HOLIDAY, CHAN HO KWON, <u>CHRISTOPHER J. ANNESLEY</u>, and F. FLEMING CRIM, *Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706*.

Product state distributions for the reaction of vibrationally state selected CH₃D with Cl, CH₃D(ν) + Cl \rightarrow CH₂D + HCl, reveal the extent to which vibrational energy initially deposited in the reactant survives in the CH₂D product. Infrared excitation prepares CH₃D in either the $\nu_1 + \nu_4$ (*E*) or the $2\nu_4$ (*A*₁, *E*) C-H stretching states and resonant enhanced multiphoton ionization (REMPI) detects the CH₂D. With $\nu_1 + \nu_4$ excitation, the reaction forms only vibrationally unexcited products, CH₂D (0₀), but $2\nu_4$ excitation forms CH₂D with stretch excited (1₁) and stretch-bend combination excited (1₁4₁) products. These results are consistent with the spectator model. In local mode notation, the $\nu_1 + \nu_4$ state corresponds to two quanta of excitation in the C-H bond (|200>|0>), and it reacts at the excited bond, giving all ground state CH₂D. The $2\nu_4$ state corresponds to excitation in two C-H bonds (|110>|0>), and in this case one excited C-H bond remains in the products, resulting in an C-H stretch excited products.