LIF AND MICROWAVE SPECTROSCOPY OF CH₂CHS

<u>MASAKAZU NAKAJIMA</u>, AKIRA MIYOSHI, Department of Chemical System Engineering, The University of Tokyo, Tokyo, 113-8656, Japan; YOSHIHIRO SUMIYOSHI, and YASUKI ENDO, Department of Basic Science, The University of Tokyo, Tokyo, 153-8902, Japan.

Precise molecular constants of the CH₂CHS (vinylthio) radical in the ground vibronic level were determined by Fourier-transform microwave (FTMW) and FTMW-millimeter wave double-resonance spectroscopy^{*a*}. The $\tilde{B} - \tilde{X}$ electronic transition of CH₂CHS was observed by LIF spectroscopy. Rotational constants in the upper electronic state were determined from a rotationally resolved LIF excitation spectrum of jet-cooled CH₂CHS. A dispersed fluorescence spectrum from the zero-vibtational level of the \tilde{B} state was also measured to determine vibrational frequencies in the ground electronic state. The experimental molecular constants were compared with results of *ab initio* calculations.

^aY. Sumiyoshi et al., J. Chem. Phys. 123, 054324 (2005).