RO-VIBRATIONAL ANALYSIS OF THE \(\nu_4, \nu_0 \) and \(\nu_3 \) BANDS OF THIOFORMALDEHYDE: EXAMPLE OF A MASSIVE Z-TYPE CORIOLIS RESONANCE

W. J. LAFFERTY, Optical Technology Division, NIST Gaithersburg, MD 20899, USA; J.-M. FLAUD, A. PERRIN, Laboratoire Inter Universitaire des Systemes Atmosphériques, CNRS, Universités Paris 12 et 7, 61 Av du Général de Gaulle, 94010 Créteil Cedex France; H. BECKERS, Y.S. KIM, H. WILLNER, Anorg. Chemistry, University of Wuppertal, D-42119 Wuppertal, GERMANY.

The infrared spectrum of thioformaldehyde (CH\(_2\)S) is of interest since this species is one of the myriad of molecules found in the interstellar space. From a spectroscopic point of view, it is of even more interest since the two lowest vibrational modes, the in-plane rocking mode, \(\nu_0 \) (B\(_2\)), and the out-of-plane wagging mode, \(\nu_4 \) (B\(_1\)), fall at 990.18 and 991.02 cm\(^{-1}\) respectively. This separation of only 0.84 cm\(^{-1}\) leads to a massive z-type Coriolis resonance where many of the rotational levels of each of the two vibrational states are mixed nearly 50% with each other. To make the situation even more interesting the C=S stretching vibration, \(\nu_2 \), with A\(_1\) symmetry occurs nearby at 1059 cm\(^{-1}\). This vibrational level also interacts with the two low frequency modes which complicates the assignment and analysis. CH\(_2\)S was produced by low pressure thermolysis of a gas flow of C\(_3\)H\(_2\)SCH\(_3\)/Ar (560° C) and CH\(_3\)SCl/Ar (1150° C) in the entrance of the multipath white cell (optical path length 32 m). At a total pressure of 0.15 mbar, 40 scans were recorded for the range 750 to 1400 cm\(^{-1}\) on a Bruker HR120 TFIR spectrometer at a resolution of 0.005 cm\(^{-1}\) (maximum optical path difference). The initial line assignment was not straightforward. There are strong series apparent in the spectrum, but the features expected for a b-type and c-type bands were not obvious near the band center. The centers of these three vibrations have been determined from medium resolution FT spectra\(^a\) as well as laser Stark measurements\(^b\). An initial calculation was made using this information as well as guessed values for the band intensities. This permitted the identification of several low \(K_a \) series. Finally after numerous iterations, the transitions in the spectrum were identified leading to an excellent set of ro-vibrational constants.

\(^b\)D.J. Bedwell and G. Duxbury, J. Mol. Spectrosc. 64, 531 (1980)