HOLGER S. P. MÜLLER, CHRISTIAN P. ENDRES, STEPHAN SCHLEMMER, I. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany; ATSUKO MAEDA, IVAN MEDVEDEV, ERIC HERBST, MANFRED WINNEWISSER, FRANK C. De LUCIA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA.

Rotational spectra of vibrationally excited states of $\mathrm{H}_{2} \mathrm{CS}$ below $1500 \mathrm{~cm}^{-1}$ have been obtained by long-path absorption spectroscopy between 120 and currently 670 GHz . The highest K_{a} accessed range from 9 to 12 and correspond to combined rotational and vibrational energies of almost $2400 \mathrm{~cm}^{-1}$. The $v_{4}=1\left(990.185 \mathrm{~cm}^{-1}\right)$ and $v_{6}=1\left(991.019 \mathrm{~cm}^{-1}\right)$ states are almost degenerate and undergo very strong Coriolis interaction $\left(\left|\zeta_{46}^{a}\right|=0.5148\right)$ which causes $K_{a}>0$ to be mixed completely. The $v_{3}=1$ state is at $1059.204 \mathrm{~cm}^{-1}$ and the first order Coriolis terms are smaller $\left(\left|\zeta_{36}^{c}\right|=0.2743\right.$ and $\left.\left|\zeta_{34}^{b}\right|=0.0574\right)$ so that perturbations are more local. Finally, the $v_{2}=1$ state ($1455.496 \mathrm{~cm}^{-1}$) is comparatively far away from the three lower states, but there is a large coupling term with $v_{4}=1$: $\left|\zeta_{24}^{b}\right|=0.8555$. Because of the large energy difference, only higher order effects are pronounced in this case. The initial assignments were greatly facilitated by previous infrared studies on ν_{4}, ν_{6}, and $\nu_{3}{ }^{a b}$ as well as on $\nu_{2}{ }^{c}$. The results from these as well as previous and present pure rotational studies on the ground vibrational state were considered in the global fit. The very satifactory fit required a modest number of vibrational corrections for the four vibrationally excited states and a comparatively large number of Coriolis interaction terms.

[^0]
[^0]: ${ }^{a}$ D. J. Bedwell and G. Duxbury, J. Mol. Spectrosc. 84 (1980) 531-558.
 ${ }^{b}$ P. H. Turner, L. Halonen, and I. M. Mills, J. Mol. Spectrosc. 88 (1981) 402-419.
 ${ }^{c}$ D. McNaughton and D. N. Bruget, J. Mol. Spectrosc. 159 (1993) 340-349.

