PROSPECTS FOR THE FORMATION OF ULTRACOLD NaRb MOLECULES IN THE GROUND $X^{1}\Sigma^{+}(v = 0; J = 0)$ STATE BY PHOTOASSOCIATION THROUGH THE INTERMEDIATE $A^{1}\Sigma^{+} \sim b^{3}\Pi$ COMPLEX

<u>A.V. STOLYAROV</u>, V.I. PUPYSHEV, E.A. PAZYUK, A. ZAITSEVSKII, *DEPARTMENT OF CHEMISTRY, MOSCOW STATE UNIVERSITY, GSP-2 LENINSKIE GORY 1/3, MOSCOW 119992, RUSSIA*; O. DOCENKO, M. TAMANIS, R. FERBER, *DEPARTMENT OF PHYSICS AND INSTITUTE OF ATOMIC PHYSICS AND SPECTROSCOPY, UNIVERSITY OF LATVIA, 19 RAINIS BOULEVARD, RIGA LV-1586, LATVIA*; A. PASHOV, *DEPARTMENT OF PHYSICS, SOFIA UNIVERSITY, 5 JAMES BOURCHIER BLVD, 1164 SOFIA, BULGARIA*; H. KNÖCKEL, E. TIEMANN, *INSTITUT FÜR QUANTENOPTIK, GOTTFRIED WIL-HELM LEIBNIZ UNIVERSITÄT HANNOVER, WELFENGARTEN 1, 30167 HANNOVER, GERMANY.*

The direct deperturbation analysis of the singlet-triplet $A^1\Sigma^+ \sim b^3\Pi$ complex of Na⁸⁵Rb and Na⁸⁷Rb isotopomers was performed in the framework of the inverted channel-coupling approach ^{*a*}. Besides of Born-Oppenheimer potential energy curves of the mutually perturbed states and the off-diagonal spin-orbit (SO) $A \sim b$ coupling function, the SO splitting of the $b^3\Pi$ state was determined due to the pronounced electronic- rotation interaction between the $b^3\Pi_0$ and $b^3\Pi_1$ components observed for high *J*-levels. Overall 24 massinvariant fitting parameters have been required to reproduce about 2300 experimental term values of both isotopomers with a standard deviation of 0.012 cm⁻¹ which is consistent with the uncertainty of the Fourier transform spectra measurement. The experimental relative intensities in the $D^1\Pi \rightarrow A \sim b$ spectra highlighted the breakdown of the conventional oscillation theorem. The strong intensity borrowing effect caused by the SO coupling and enhanced by the violation of the Franck-Condon principle was analyzed. The calculated $A \sim b - a$, X transition probabilities were applied for simulation of the stimulated Raman processes $a^3\Sigma^+ \rightarrow A \sim b \rightarrow X^1\Sigma^+$ which can lead to efficient formation of ultracold NaRb molecules in the ground level $v_X = 0$; $J_X = 0$. The quantitative transition moments predicted for favorable lambda schemes show that such experiments are feasible.

^aO. Docenko, M. Tamanis, R. Ferber, E.A. Pazyuk, A. Zaitsevskii, A.V. Stolyarov, A. Pashov, H. Knöckel, E. Tiemann *Phys. Rev. A* accepted, 2007, in print