INFRARED ACTION SPECTROSCOPY AND STABILITY OF THE OH-HONO₂ REACTION INTERMEDIATE

BRIDGET A. O'DONNELL, EUNICE X. J. LI, and MARSHA I. LESTER, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323.

The reaction of nitric acid (HONO₂) with the hydroxyl radical (OH) is of significant atmospheric interest. Kinetic studies have revealed unusual behavior including a negative temperature dependence, pressure dependence, and an overall reaction rate strongly affected by isotopic substitution.^{*a*} This suggests that the reaction occurs through an intermediate, theoretically predicted to be a hydrogen-bonded OH-HONO₂ complex in a six-membered ring-like configuration.^{*b*} In this study, OH-HONO₂ is produced in the gas phase by the association of photolytically generated OH radicals with HONO₂ in the collisional region of a supersonic expansion. Infrared action spectroscopy is used to identify the fundamental OH radical stretch (ν_1) and OH nitric acid stretch (ν_2) of the complex. The rotationally structured ν_1 band^{*c*} is centered at 3216 cm⁻¹, while the extensively broadened ν_2 band is centered at 3260 cm⁻¹, both shifted from their respective monomer. Following infrared excitation, the OH fragments resulting from vibrational predissociation are detected by laser-induced fluorescence on the OH $A^2\Sigma^+ \cdot X^2\Pi(1,0)$ transition. The highest observed OH (v=0) product channels, J=17/2, $\Omega=1/2$ for the OH nitric acid stretch, lead to determination of an upper limit for the binding energy of OH-HONO₂, $D_0 \leq 6.2$ kcal mol⁻¹, which is consistent with *ab initio* predictions.^{*b*}

^aS. S. Brown, R. K. Talukdar, and A. R. Ravishankara, J. Phys. Chem. A 105, 9 (2001).

^bS. Aloisio and J. S. Francisco, J. Phys. Chem. A 103, 30 (1999).

^cOpen-shell theoretical analysis by Mark D. Marshall.