IR SPECTROSCOPY OF LONG CARBON CHAINS AND THEIR DERIVATIVES IN CRYOGENIC MATRICES: SPECIES IDENTIFICATION BY $^{13}C_3 \rightarrow ^{12}C_3$ ISOTOPIC SUBSTITUTION.

<u>DMITRY STRELNIKOV</u> and WOLFGANG KRÄTSCHMER, *Max-Planck-Institut für Kernphysik*, *D-69029 Heidelberg*, *PO Box 103980*, *Germany*.

Along with matrix gas, we co-deposited carbon vapor from two separated carbon evaporation sources, namely a 12 C-source and a 13 C-source. Under the applied conditions the C_3 molecules are the most abundant species in both carbon sources. We observed that in the formation process of long carbon chains the C_3 units play a major role. This finding was used to establish a new species identification method based on isotopic replacement. The old technique of atomic $^{13}C\rightarrow^{12}C$ substitution can be reasonably applied only for molecules with a small number of carbon atoms (n9). Using the new method of molecular $^{13}C_3\rightarrow^{12}C_3$ substitution, quite simple distributions having small number of isotopomeric IR absorptions were obtained also for larger species. We present data for C_n and $C_nO_{1,2}$ (n6).