OPTICAL-OPTICAL DOUBLE RESONANCE SPECTROSCOPY OF THE PREDISSOCIATED, QUASILINEAR B^1A^\prime STATE OF CHF

C. TAO, C. MUKARAKATE AND S. A. REID, Department of Chemistry, Marquette University, Milwaukee, WI 53233; T. W. SCHMIDT AND S. H. KABLE, School of Chemistry, University of Sydney, NSW 2006, Australia.

We have recently observed transitions to the predissociated, quasilinear B^1A' state of CHF using a fluorescence dip detected optical-optical double resonance technique.^a By exciting selected rovibronic states in intermediate A^1A'' levels belonging to the progressions 2_0^n , $1_0^12_0^n$, and $2_0^n3_0^1$, a variety of B^1A' state levels were observed, extending to an energy of 7000 cm⁻¹ above the B^1A' state origin. In this talk, we will focus on the spectroscopy of the B^1A' state and the excited state barrier to linearity. Experimental data will be compared with ab initio predictions.

^aC. Tao, S. A. Reid, T. W. Schmidt, and S. H. Kable, J. Chem. Phys. 125, 051105 (2007).