STIMULATED EMISSION PUMPING SPECTROSCOPY OF THE X^1A^\prime STATE OF CHF

C. MUKARAKATE, C. TAO AND S. A. REID, Department of Chemistry, Marquette University, Milwaukee, WI 53233; S. H. KABLE, School of Chemistry, University of Sydney, NSW 2006, Australia.

Building upon the seminal work of Suzuki and Hirota^a, in our first application of stimulated emission pumping spectroscopy to a halocarbene we report the spectroscopy of the X^1A' state of CHF, previously examined by our group using single vibronic level emission spectroscopy.^b, By exciting selected rovibronic levels in the A^1A'' state belonging to the progressions 2_0^n , $1_0^12_0^n$, and $2_0^n3_0^1$, a variety of X^1A' state levels have been observed, including several not previously observed in our emission study. The data provide precise ground state rotational constants and term energies, allowing a more complete modeling of the extensive anharmonic interactions in the X^1A' state. The analysis of these interactions and the continuing search for triplet state levels will be emphasized.

^aT. Suzuki and E. Hirota, J. Chem. Phys. 88, 5541 (1986).

^bH. Fan, C. Mukarakate, M. Deselnicu, C. Tao, and S. A. Reid, J. Chem. Phys. 123, 014314 (2005).