OPTICAL STARK SPECTROSCOPY OF RHODIUM CONTAINING MOLECULES: RhN^a.

<u>TIMOTHY C. STEIMLE</u>, TONGMEI MA, JAMIE GENGLER, HAILING WANG, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287; ZHONG WANG, Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11973-5000.

Rhodium is very important in both the homogeneous and heterogeneous catalytic induced chemical modification of nitrogen containing molecules. The only practical means of gauging the quantitative predictability of either *ab initio* and DFT computations used to model catalysis is by a comparison of experimental and predicted properties of bound Rh containing molecules. Here we report on the optical Stark effect in the Q(1) and R(0) lines of the [15.1]1 - $X^1\Sigma^+$ (1,0) band of rhodium mononitride, RhN, which were analyzed to determine the permanent electric dipole moments, μ , for the $X^1\Sigma^+$ (v=0) and [15.1]1 (v=1) states to be 2.43(5)D and 1.75(1)D, respectively. TJe determined dipole moments are compared with predicted values obtained from DFT^{*a*} and an all-electron *ab initio* calculation^{*b*}. A simple molecular orbital correlation diagram is used to rationalize the relative values of μ for RhN, isovalent IrN^{*c*} and RhO^{*d*}. Bonding in the 4*d* metal containing nitrides, as revealed from an interpretation of μ , will be presented.

^aSupported by DoE-Basic Energy Sciences

^aStevens et al, Chem. Phys. Lett. 421, 281 (2006).

^bShim et al, J. Mol. Struct. 293, 127 (1997).

^cA.J. Marr, M.E. Flores and T.C. Steimle, J. Chem. Phys. 104, 8183 (1996).

^dJ.Gengler, T. Ma and T.C. Steimle, J. Chem. Phys.(accepted).