EMISSION SPECTRA OF NiH SHOWING EXTENSIVE ELECTRONIC ENERGY TRANSFER BETWEEN EXCITED STATES

<u>AMANDA J. ROSS</u>, RAPHAEL VALLON, PATRICK CROZET and CYRIL RICHARD, Université Lyon 1; CNRS; LASIM UMR 5579, 43 Bd du 11 novembre 1918, F-69622 Villeurbanne, France.

Fourier transform resolved laser induced fluorescence spectra have allowed us to investigate the low-lying electronic states of NiH arising from the Ni(3d⁹ 4s¹) configuration. Although laser excitation with a single mode laser should promote the molecule (formed in a hollow cathode discharge running at 1 torr pressure, with 10% H₂ in argon) to a unique excited state that should be readily identifiable from the work of Kadavathu and co-workers,^{*a*} the resolved fluorescence spectra are unexpectedly complex. Efficient energy transfer occurs between excited electronic states, retaining only isotopic selectivity. Analysis of the spectra locates energy levels up to 8000 cm⁻¹ above v=0 in the electronic ground state (X ${}^{2}\Delta_{5/2}$), from all components of the ${}^{2}\Sigma$, ${}^{2}\Pi$ and ${}^{2}\Delta$ states forming the supermultiplet complex studied by Gray et al.^{*b*} Measurements have been made so far for 58 NiH and 60 NiH. To observe heavier isotopes of nickel, an intracavity fluorescence experiment is required. Signals are increased by a factor 25, but the signal/noise ratio in Fourier spectra is disappointing when compared with intracavity excitation results.^{*cd*} Nevertheless, this work has allowed us almost to double the range of known energy levels below 10000 cm⁻¹ for NiH.

^aS. A. Kadavathu, R. Scullman, R. W. Field, J. A. Gray, and M. Li, J. Mol. Spectrosc., <u>147</u> 448 (1991)

^bJ. A. Gray, M. Li, T. Nelis, and R. W. Field, J. Chem. Phys., 1991, <u>95</u> 7164 (1991)

^cE. J. Hill and R. W. Field, J. Chem. Phys., <u>93</u> 1 (1990)

^dL. C. O'Brien and J. J. O'Brien, Astrophys. J., <u>621</u> 554 (2005)