AN ANALYTIC POTENTIAL ENERGY CURVE FOR THE a ${}^{3}\Sigma^{+}$ STATE OF KLi, DERIVED FROM OBSERVATIONS OF THE UPPER VIBRATIONAL LEVELS ONLY

HOUSSAM SALAMI, AMANDA J. ROSS, PATRICK CROZET, Université Lyon 1; CNRS; LASIM UMR 5579, 43 Bd du 11 novembre 1918, F-69622 Villeurbanne, France; ROBERT J. LE ROY, Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; PAWEL KOWALCZYK, Institute of Experimental Physics, Warsaw University, ul. Hoża 69, 00681 Warsaw, Poland; WLODZIMIERZ JASTRZEBSKI, Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02668 Warsaw, Poland.

Fourier transform resolved fluorescence spectra of the ³⁹K⁶Li molecule have been recorded in the near-infrared, following laser excitation (Coumarin 6 dye) to high vibrational levels of the $B^{1}\Pi$ state. The FT spectra show transitions to high vibrational levels of both the $X^{1}\Sigma^{+}$ and $a^{3}\Sigma^{+}$ electronic states. These include 147 transitions into six vibrational levels of the $a^{3}\Sigma^{+}$ state, which lie between 7 and 88 cm⁻¹ below the dissociation asymptote. Unfortunately, their energies span less than 30% of the total ground-triplet-state well depth, and even vibrational assignment is not immediately obvious. However, fitting those data to eigenvalues of analytical model potential functions whose outer limbs incorporate the theoretically predicted long-range form, $V(R) \simeq D - C_6/R^6 - C_8/R^8$, yields complete, plausible potential curves for this state. The best fits converge to remarkably similar solutions which strongly suggest that the lowest observed level is v=5. Equilibrium parameters from these fits indicate $D_e = 287(\pm 4) \text{ cm}^{-1}$ and $R_e = 4.99(\pm 0.09)$ Å for the $a^{3}\Sigma^{+}$ state of KLi, with $\omega_e = 47.3(\pm 1.5)$ and $44.2(\pm 1.5) \text{ cm}^{-1}$ for ³⁹K⁶Li and ³⁹K⁷Li, respectively. Properties of the resulting potential are compared with those of an *ab initio* potential and with those of the analogous states of Li₂, K₂, Na₂ and NaK. The optimized potential curve predicts that the last bound level of both isotopologues lies less than 0.002 cm⁻¹ below the atomic asymptote, but since these binding energies are much smaller than the current uncertainty in the ground state dissociation energy ($\pm 0.07 \text{ cm}^{-1}$), they remain subject to caution.