THE ROTATIONAL SPECTRUM OF CHLORINE NITRATE (CIONO₂): ν_6 AND THE $\nu_5/\nu_6\nu_9$ DYAD

Z. KISIEL, E.BIALKOWSKA-JAWORSKA, Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland; R. A. H. BUTLER, Department of Physics, Pittsburg State University, Pittsburg, KS 66726; D. T. PETKIE, Department of Physics, Wright State University, Dayton, OH 45435; P. HELMINGER, Department of Physics, University of South Alabama, Mobile, Al 36688; F. C. DE LUCIA, Department of Physics, The Ohio State University, Columbus, OH 43210.

Chlorine nitrate is an important stratospheric molecule and analyses of extensive measurements of rotational transitions in the ground state and ν_9 (120 cm⁻¹)^a, the $2\nu_9/\nu_7$ dyad (262 cm⁻¹)^b, and the $3\nu_9/\nu_7\nu_9$ dyad (361 cm⁻¹)^c have already been reported. The available experimental data for ClONO₂ have been extended by a new FASSST spectrum recorded between 118-378 GHz at greater sensitivity and resolution than hitherto and on a more pure sample.

The new spectrum allowed an improvement in the spectroscopic constants for the ground state and ν_9 , as well as more confident assignment of rotational transitions in higher vibrational states. Application of the AABS package for Assignment and Analysis of Broadband Spectra^d was crucial in keeping track of the transitions already assigned and rapid extension of datasets for new states. The analyses of the relatively isolated ν_6 (435 cm⁻¹) and of the $\nu_5/\nu_6\nu_9$ dyad (551 cm⁻¹) have now been completed for both ³⁵ClONO₂ and ³⁷ClONO₂. In the parent isotopologue the ν_5 and $\nu_6\nu_9$ states are found to be 4.124652(6) cm⁻¹ apart and to be connected by a sufficiently strong Coriolis interaction to give rise to measurable interstate transitions and to perturbed hyperfine splitting patterns.

^aH.S.P.Müller, et al., J. Mol. Spectrosc., **181**, 363-378 (1997).

^bR.A.H.Butler et al. J. Mol. Spectrosc., **213**, 8-14 (2002).

^cR.A.H.Butler et al. J. Mol. Spectrosc., **220**, 150-152 (2003).

^dZ.Kisiel, PROSPE - Programs for ROtational SPEctroscopy, http://info.ifpan.edu.pl/~kisiel/prospe.htm