HIGH – RESOLUTION LASER SPECTROSCOPY OF THE $A^3\Pi_1 \leftarrow X^1\Sigma^+$ SYSTEM OF ICI IN 0.8 μ m REGION.

<u>N. NISHIMIYA</u> and T. YUKIYA, Department of System Electronics and Information Technology, Department of Applied Computer Science, Tokyo Plolytechnic University, Iiyama 1583, Atsugi City, 243-0297 Kanagawa, JAPAN.

The doppler limited electronic vib-rotational absorption spectrum of $A^3\Pi_1 \leftarrow X^1\Sigma^+$ system in $I^{35/37}Cl$ is measured in the 11300 – 13200 cm⁻¹ region using a Ti:Sapphire Ring Laser (Coherent 899-21). The 56 bands belonging to $(v' = 0 \sim 7) \leftarrow (v'' = 0 \sim 6)$ in $I^{35/37}Cl$ are assigned. The Dunham coefficients of the $X^1\Sigma^+$ state are calculated based on a global reduced least squares fitting procedure. The Y'_{10} and Y'_{01} reported by Hedderich *et al.*^a are taken into the calculation because we do not have sufficient spectrum belonging to $v'' = 0 \sim 2$. In the $A^3\Pi_1$ state, the $T'_v, B'_{ve/f}, D'_v$ and H'_v are determined instead of the Dunham coefficients to avoid the distortion of the potential. To investigate the accuracy of Dunham coefficients determined in the $X^1\Sigma^+$ state, the absorption lines of $4' \leftarrow 0''$ and $5' \leftarrow 0''$ bands are assigned in the 14438 – 14491 cm⁻¹ region where measurements are performed intermittently. Those lines are well positioned within the limit of the standard deviation.

^aH. G. Hedderich and P. F. Bernath, J. Mol. Spectrosc. 155,384–392(1992)