PROBING SOLVATION EFFECTS OF $IBr^{-}(CO_2)_n$ BY PHOTOELECTRON SPECTROSCOPY

ELISA MILLER, LEONID SHEPS, RYAN CALVI, and CARL LINEBERGER, JILA, Department of Chemistry, University of Colorado at Boulder, Boulder, Co 80309.

We report photoelectron spectra of $IBr^{-}(CO_2)_n$ to understand the changes in IBr^{-} structure due to clustering. These experiments utilize anion photoelectron spectroscopy combined with velocity map imaging (VMI) to obtain photoelectron energy and angular distributions. Photodetachment of $IBr^{-}(X^{2}\Sigma^{+})$ with 300 nm radiation accesses three neutral states of IBr: the ground state $(X^{1}\Sigma^{+})$ and the next two excited states $({}^{3}\Pi_{2}$ and ${}^{3}\Pi_{1})$. Known excitation energies between the neutral states allow a direct calculation of the EA of IBr, 2.53 eV. Observed vibrational progressions resulting from transitions to the excited 3Π states of IBr lead to equilibrium distances. Current experiments on $IBr^{-}(CO_2)_n$ will be compared to that of the bare anion to understand changes in the structure of the cluster with additional CO_2 molecules.