IDENTIFICATION OF THE LOWEST-LYING BENDING VIBRATIONAL LEVELS OF THE $\tilde{A}\ ^1A_u$ STATE OF ACETYLENE, C2H2

ANTHONY J. MERER, Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei, Taiwan 10617, Department of Chemistry, University of British Columbia, 6174 University Boulevard, Vancouver, B.C., Canada V6T 1Z3; NAMI YAMAKITA, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan; ADAM H. STEEVES, HANS A. BECHTEL and ROBERT. W. FIELD, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139.

Acetylene is linear in its ground state, but becomes *trans*-bent in its $\tilde{A}^{1}A_{u}$ state. The vibrational structure of the $\tilde{A} \leftarrow \tilde{X}$ system consists^{*a*} of long progressions in the ν'_{3} (*trans*-bending) vibration based on the origin and the ν'_{2} (C-C stretch) fundamental. These progressions become irregular at a vibrational energy of about 5000 cm⁻¹, with many extra bands appearing^{*b*}. Spectra of jet-cooled acetylene showed recently^{*c*} that extra bands can also be found at much lower energy. Two of the extra levels were identified as the a_g combinations $1^{1}3^{1}$ and $2^{2}3^{1}$, but the other levels are combinations involving the two low frequency bending vibrations, ν_4 (torsion) and ν_6 (in-plane bending).

Two types of high resolution spectra have been recorded in order to assign these extra levels. Infrared-ultraviolet double resonance spectra via the \tilde{X} , ν_3 level have identified large numbers of *ungerade* vibrational levels at energies of 2000-7000 cm⁻¹, while high sensitivity laser-induced fluorescence spectra of jet-cooled acetylene have given the positions of many low-lying *gerade* levels. The low-lying bending levels are affected by strong *a*-axis Coriolis coupling, which distorts their *K*-structures considerably. In addition, there is very strong Darling-Dennison resonance between ν_4 and ν_6 , with $k_{4466} \approx 50 \text{ cm}^{-1}$. Nevertheless a good fit to the structures of the pure bending polyads can be obtained, allowing for both the Darling-Dennison resonance and the Coriolis coupling.

^aJ.K.G. Watson, M. Herman, J.C. Van Craen and R. Colin, J. Mol. Spectrosc., 95, 101 (1982).

^bJ.C. Van Craen, M. Herman, R. Colin and J.K.G. Watson, J. Mol. Spectrosc., 111, 185 (1985).

^cA.J. Merer, N. Yamakita, S.Tsuchiya, J.F. Stanton, Z. Duan and R.W. Field, Mol. Phys., 101, 663 (2003).