N. P. NETESOVA, M. V. Lomonosov Moscow State University, Physics Faculty, 119992, Moscow, Sparrow Hills, Russia.

Problem: to not use the classical Kramers-Kronig integral transformation and to define all optical electron oscillation parameters for any energy point from semiconducting nanostructure experimental reflection spectra\footnote N.~P.~ Netesova, NGS12 Proceedings , Editors: J.~Kono, Jean Leotin, Toulouse, France,\textbf 2, 178-183, (3-7 July 2005). Within the untied oscillation model the calculation technique of all semiconducting heterostructure optical parameters by the intermediate functions (\hbar cdot omega pi, \hbar cdot omegan, \hbar cdot Gamma) are the plasma, effective natural, radiant friction energies in eV, 2 cdot pi cdot\hbar is the Planck constant) is presented. As an example the optical parameters of PbS, PbSe, PbTe and GaAs, GaP between 0 and 25 eV in any spectrum region are established. The consistent approximation approach of the reflectance factor R to real value is advanced. As a result, all heterostructure basic electron optical functions (\hbar cdot omegap, \hbar cdot omegapm, \hbar cdot omegac, \hbar cdot gamma are the plasma, plasma maximum, effective natural, radiant friction energies, varepsilonr, varepsilon iota, nr, n iota are the real and imaginary components of the dielectric varepsilon and refractive index n functions, accordingly, ( varepsilonr)max, ( varepsilonr) min, (\hbar cdot omegavarepsilon iota is conductivity, (\hbar cdot omega)· n iota=(c cdot\hbar/2)· alpha, where c is the light velocity, alpha is absorption coefficient, L=Im (-1/ varepsilon) are electron lossis, equal imaginary component of the minus reciprocal dielectric function varepsilon, \hbar cdot omega · L=(\hbar cdot omega)· Im (-1/ varepsilon) are effective electron lossis) calculated by the intermediate functions in any electron optical spectrum region. Then, for GaP experimental reflection spectra it is selected the point \hbar2 cdot omega2=10.5625·10-4, the intermediate parameters are \hbar2 cdot omega pi2=10.5625 ·10-4, \hbar2 cdot omegan2=9.03130933157· 10-4, \hbar2 cdot Gamma2=1.875029665786·10-4, the basic parameters are \hbar2 cdot omegap2=19.5902684716 \linebreak·10-4, \hbar2 cdot omegac2=5.28479085993 ·10-4, \hbar2 cdot gamma2=0.79237637701·10-4 (eV)2. The R values calculated by electron parameters coincide with the experimental values R (\hbar omega) to within 10-6\div10-10 for 12 symbol computation. By presented method the nanostructure oscillation electron parameters are determined for device producing.