THEORETICAL STUDY OF LOW-LYING STATES OF UH

<u>F. MICHAEL DOLG</u> and XIAOYAN CAO, Institut für Theoretische Chemie, Universität zu Köln, Greinstr. 4, D-50939 Köln, Germany..

Large-scale multireference configuration-interaction (MRCI) calculations using the all-electron scalar-relativistic Douglas-Kroll-Hess (DKH) Hamiltonian, as well as a relativistic energy-consistent small-core pseudopotential (SPP) for uranium, have been performed to study the low-lying electronic Λ S states of uranium monohydride UH with term energies below 0.5 eV. After taking spin-orbit effects into account both DKH/MRCI and SPP/MRCI calculations predict a ${}^{4}I_{9/2}$ ground state. The calculated ground state molecular constants of both approaches show a good agreement with each other (MRCI+Q, DKH: Re=2.021 Å, ω_e =1483 cm⁻¹, D_e =2.79 eV; SPP: R_e =2.011 Å, ω_e =1497 cm⁻¹, D_e =2.85 eV), as well as with available experimental data (ω_e =1424 cm⁻¹ in argon matrix).