INFRARED SPECTRA OF HYDROGEN CLUSTERS SEEDED WITH CARBON DIOXIDE

<u>A.R.W. McKELLAR</u>, Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.

It is now possible to probe cold (<0.5 K) helium clusters in the size range $N \sim 2$ to 70 by means of the vibration-rotation spectrum of an embedded infrared chromophore molecule such as CO₂,^{*a*} often with atom-by-atom resolution. To some extent, hydrogen clusters can also be studied in this way, as shown by our previous work in which CO,^{*b*} OCS,^{*c*} and N₂O^{*d*} were the chromophores.

Here we extend the study of hydrogen clusters to the case of CO_2 as the probe. The symmetry of CO_2 provides an important difference compared to the other probe molecules. This has the effect of eliminating half of the rotational levels (for the normal $C^{16}O_2$ or $C^{18}O_2$ isotopomers) and of accentuating the differences between *para*H₂ and *ortho*H₂ clusters. As in the case of (H₂)_N-OCS and (H₂)_N-N₂O, we find that (H₂)_N-CO₂ cluster transitions are relatively easy to identify up to about N = 7, but difficult to follow above this point. However, in contrast to the previous work there is intriguing evidence for a series of weak but regularly-spaced transitions which may extend to $N \sim 15$ or beyond.

- ^bS. Moroni, M. Botti, S. De Palo, and A.R.W. McKellar, J. Chem. Phys. 122, 094314 (2005).
- ^cJ. Tang and A.R.W. McKellar, J. Chem. Phys. **121**, 3087 (2004).
- ^dJ. Tang and A.R.W. McKellar, J. Chem. Phys. 123, 114314 (2005).

^aA.R.W. McKellar, J. Chem. Phys. 128, 044308 (2008).