THE VIBRATIONAL ASSIGNMENT OF NO3 IN THE GROUND ELECTRONIC STATE

EIZI HIROTA, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan; KEN-TAROU KAWAGUCHI, Department of Chemistry, Okayama University, Tsushima-naka 3-1-1, Okayama 700-8530, Japan; TAKASHI ISHIWATA, Department of Information Machines and Interfaces, Faculty of Information Sciences, Hiroshima City University, Ozukahigashi, Asaminami, Hiroshima 731-3194, Japan; IKUZO TANAKA, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro, Tokyo 152-8550, Japan.

We have previously analyzed a band of the NO₃ radical observed at 1492cm^{-1} and have established that the band was of *E* type, thus being assigned to the degenerate N-O stretching, ν_3^{a} . We have explained several anomalies noticed in the band in terms of a vibronic interaction model ^b. Stanton ^c recently proposed an alternative assignment $\nu_1 + \nu_4$ for this band, primarily based on an *ab initio* calculated potential. In order to establish the vibrational assignment of the band, we applied the vibronic interaction model to the ¹⁴NO₃-¹⁵NO₃ isotope shift and calculated it to be 16 cm⁻¹ in reasonable agreement with the observed value of 20 cm^{-1d} when the band is ν_3 , whereas we obtained a very small value (about 1 cm⁻¹ or less) for Stanton's assignment, at variance with the observed data. We have also scanned the region from 700 up to 1400 cm⁻¹ to detect the ν_3 band predicted by Stanton at 994 cm^{-1e}, by using a Fourier transform spectrometer. Although some part of this region was covered by strong absorption of the precursor HNO₃, we confirmed that there were no bands observed between 925 and 1277 cm⁻¹ that were more than 1/10 as intense as the 1492 cm⁻¹ band.

^aT. Ishiwata etal., J. Chem. Phys. 82, 2196 (1985), K. Kawaguchi etal., J. Chem. Phys. 93, 951 (1990).

^bE. Hirota *etal.*, J. Chem. Phys. 95, 771 (1991).

^cF. Stanton, J. Chem. Phys. 126, 134309 (2007).

^dT. Ishiwata *et al.*, J. Chem. Phys. 82, 2196 (1985).

^eF. Stanton, J. Chem. Phys. 126, 134309 (2007).