INFRARED SPECTRA OF C2H4 UNDER JET-COOLED AND PARA-H2 MATRIX CONDITIONS

<u>YUAN-PERN LEE</u> AND CHUNG-WEI HUANG, Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan; KEEVIN DIDRICHE^a AND MICHEL HERMAN, Laboratoire de Chimie quantique et Photophysique, CP160/09, Université libre de Bruxelles, Ave. Roosevelt, 50, B-1050, Brussels, Belgium; MAUD ROTGER, Institut Carnot de Bourgogne, UMR 5209 CNRS-Université de Bourgogne, 9 avenue Alain Savary, B.P. 47870, F-21078 Dijon Cedex, France.

Spectra of C_2H_4 isolated in para- H_2 are compared with those of jet-cooled C_2H_4 recorded with an FTIR spectrometer. The ν_7 , ν_9 , and ν_{11} bands of jet-cooled C_2H_4 all exhibit an intensity distribution corresponding to about 10 K for rotation, with no evidence of nuclear spin conversion. Spectra of the ν_{11} band of C_2H_4 isolated in solid para- H_2 clearly show a rotational structure similar to that observed for C_2H_4 in helium droplets. Other bands of C_2H_4 exhibit only partially resolved rotational structures. Rotational constants B and C for ν_{11} of C_2H_4 in para- H_2 are about 50 % those of the gaseous C_2H_4 . The out-of-plane deformation mode ν_7 shows a small (< 1 cm⁻¹) blue matrix shift, whereas other modes are red-shifted by 2.2 to 3.9 cm⁻¹.

^aFRIA Researcher