LASER INDUCED FLUORESCENCE SPECTROSCOPY OF THE SINSI $^2\Delta$ – \tilde{X} $^2\Pi$ TRANSITION

MASARU FUKUSHIMA and TAKASHI ISHIWATA, Faculty of Information Sciences, Hiroshima City University, Asa-Minami, Hiroshima 731-3194, Japan.

On our SiCN/SiNC experiment^{*a*}, we measured laser induced fluorescence excitation spectrum in the range, 27,500 ~ 33,000 cm⁻¹, under jet cooled condition. Some of the vibronic bands in the spectrum have been assigned to Si containing species, such as Si₂, SiCH₂, SiCN, and SiNC, but some remain unassigned. The strongest band among them has a ${}^{2}\Pi - {}^{2}\Pi$ type rotational structure. The rotational constants of the ground and excited states are determined to be about 0.11 cm⁻¹, and they are about half of those of SiCN and SiNC. The spin-orbit interaction constant is determined to be 141.7 and 2.7 cm⁻¹ for the ground and excited states, respectively. Those are comparable with 140.8 and 4.9 cm⁻¹ for the $\tilde{X} \,{}^{2}\Pi$ and $\tilde{A} \,{}^{2}\Delta$ states of SiCN (not SiNC), respectively. As a result of some discussion, we have finally conclude that the spectrum can be attributed to the ${}^{2}\Delta - \tilde{X} \,{}^{2}\Pi$ transition of Si-N-Si. The ${}^{2}\Sigma^{+} - \tilde{X} \,{}^{2}\Pi$ transition of Si₂N was studied by two groups^{*bc*}. The rotational constant of the ground $\tilde{X} \,{}^{2}\Pi$ state agrees with that of the previous work. The vibronic structure of the laser induced fluorescence excitation spectrum is unusual; the ${}^{2}\Sigma - {}^{2}\Pi$ type vibronic bands have been only identified.

^aM. Fukushima and T. Ishiwata, 60th International Symposium on Molecular Spectroscopy, TC02 (2005).

^bD. J. Brugh and M. D. Morse, Chem. Phys. Lett. <u>267</u>, 370 (1997).

^cZ. J. Jakubek, M. Zachwieja, S. G. Nakhate and B. Simard, 57th International Symposium on Molecular Spectroscopy, MG05 (2002).