INFRARED SPECTROSCOPY OF THE MIXED N₂O-CO₂ DIMER

<u>M. AFSHARI</u>, M. DEHGHANY, N. MOAZZEN-AHMADI, Department of Physics and Astronomy, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; A.R.W. MCKELLAR, Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.

High-resolusion infrared spectra of the weakly bound N₂O-CO₂ complex are studied using a tunable diode laser to probe a pulsed supersonic slit jet. The previously known N₂O-CO₂ dimer band in the region of the ν_3 CO₂ asymmetric strtch (~ 2350 cm⁻¹) is remeasured and analyzed in improved detail and two new bands in the regions of the N₂O ν_1 (~ 2230 cm⁻¹) and ν_3 (~ 1280 cm⁻¹) stretching fundamentals are observed and assigned to N₂O-CO₂. The ground state rotational constants for all three bands are A = 0.29498 cm⁻¹, B = 0.05801 cm⁻¹ and C = 0.04837 cm⁻¹. We also observe another band with c-type rotational structure at about 2251.5 cm⁻¹ which is assigned as a combination of the intramolecular N₂O ν_1 stretching vibration and the intermolecular out-of-plane torsional vibration. The resulting torsional frequency for the N₂O-CO₂ dimer is about 25.7 cm⁻¹.