MICROWAVE SPECTRUM AND STRUCTURE DETERMINATION OF THE CCP AND ${}^{13}C^{13}CP$ RADICALS $(X^2\Pi_r)$

<u>M. SUN</u>, Department of Chemistry, Department of Astronomy, and Steward Observatory, University of Arizona, Tucson, AZ, 85721; D. T. HALFEN, Steward Observatory, University of Arizona, Tucson, AZ, 85721; D. J. CLOUTHIER, Department of Chemistry, University of Kentucky, Lexington, KY, 40506; and L. M. ZI-URYS, Department of Chemistry, Department of Astronomy, and Steward Observatory, University of Arizona, Tucson, AZ, 85721.

The microwave spectrum of the CCP and ${}^{13}C^{13}CP$ radicals $(X^2\Pi_r)$ has been measured using Fourier Transform techniques. These species were created by the reaction of a mixture of PCl₃ vapor and acetylene diulted in argon carrier gas and a DC glow discharge. Two rotational transitions each were measured in the frequency range of 18 to 32 GHz. The lambda-doublets of the $\Omega = 1/2$ component of CCP and ${}^{13}C^{13}CP$ were each split by phosphorus hyperfine interactions. For ${}^{13}C^{13}CP$, additional hyperfine splittings were observed due to both ${}^{13}C$ atoms, creating several doublets of doublets. These data were analyzed with a Hamiltonian incorporating three nuclear spins. The data were combined with millimeter/submillimeter measurements for CCP and ${}^{13}C^{13}CP$, and fit with a case (c) Hamiltonian, and effective rotational, lambda-doubling, and phosphorus and carbon-13 hyperfine constants were determined.