QUANTUM CHEMICAL CLUSTER STUDIES OF ICE-BOUND REACTIONS OF FORMALDEHYDE (H₂CO), ACETALDEHYDE (CH₃CHO), OR ACETONE (CH₃COCH₃) WITH AMMONIA (NH₃)

DAVID E. WOON and DOROTHY J. MILLER, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801.

While many of the reactions that can occur in icy grain mantles in cold interstellar clouds are either barrierless recombinations of open-shell radicals or are driven by energetic processing (photolysis, radiolysis, or shocks), there is a group of unusual reactions involving stable, closed-shell species that can also be efficient at very low temperatures. Previous experimental work\(^a\) found that H₂CO and NH₃ can evidently react at temperatures under 70 K if they are embedded within an ice matrix, a conclusion that was subsequently confirmed theoretically\(^b\). To assess the impact of including more water, cluster calculations were performed at the MP2/6-31+G** or B3LYP/6-31+G** level with up to 4H₂O and 12H₂O, respectively. Electrostatic contributions from bulk ice were modelled with either PCM and IPCM reaction field solvation. In addition to revisiting H₂CO + NH₃, we also characterized the reactions of ammonia with acetaldehyde and acetone. The new work confirms that the reaction barriers are very small, but it also indicates that water induces a substantial interaction between NH₃ and the carbonyl species in the solvated pre-reaction complexes. In small clusters, the C-N distance decreases by about 1 Å, and partial charge-transfer complexes are formed. In large clusters, a proton transfers to yield cationic complexes. We will present an analysis of potentially observable vibrational features of these complexes.