NEGATIVE ION PHOTOELECTRON SPECTRA OF DIHALOCARBENES AND DIHALOMETHYL RADICALS

SCOTT WREN, KRISTEN M. VOGELHUBER, and W. CARL LINEBERGER^a, JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309.

Dihalocarbenes of the form CX_2 (X = F, Cl, Br, I) are important intermediates in organic reactions, due to the unique chemical properties of their low-lying neutral singlet 1A_1 and triplet 3B_1 states that affect their reactivities. Disagreement between experimental and theoretical results for the singlet-triplet splittings in CCl_2^- , CBr_2^- , and Cl_2^- prompted a careful reinvestigation of the photoelectron spectra of these compounds, revealing contamination from HCX_2^- species. Contributions from contaminants previously obscuring the dihalocarbene 3B_1 triplet spectra have been minimized, and photoelectron spectra of isolated HCX_2^- compounds were collected to further elucidate the dihalocarbene experimental data. The new CCl_2^- 351 nm photoelectron spectra exhibit vibrationally resolved transitions to singlet and triplet electronic states; careful analysis drastically alters the previous identification of the triplet state origin, resulting in substantially improved agreement with high level calculations.

^aSupport from NSF and AFOSR is gratefully acknowledged