INFRARED OBSERVATION OF THE $\nu_2(\sigma)$ STRETCHING MODE OF LINEAR GeC₃

E. GONZALEZ, C. M. L. RITTBY, and W. R. M. GRAHAM, Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129.

GeC₃Ge was first¹ produced by dual laser ablation of germanium and carbon rods, and the $\nu_3(\sigma_u)$ stretching fundamental was assigned at 1920.7 cm⁻¹. Later work² enhanced the production of the molecule via laser ablation of a single, sintered germanium-carbon rod, thus enabling the identification of two additional infrared active vibrational fundamentals $\nu_4(\sigma_u)$ =735.6 cm⁻¹ and $\nu_6(\pi_u)$ =580.1 cm⁻¹. In the present work using the same technique, GeC₃ trapped in solid Ar at ~10 K has been observed by FTIR spectroscopy . Comparison of ¹³C isotopic shift measurements with the predictions of density functional theory (DFT) calculations at the B3LYP/cc-pV(D,T)Z level confirm the identification of the $\nu_2(\sigma)$ stretching fundamental at 1279.6 cm⁻¹.

¹ D.L. Robbins, C.M.L. Rittby, and W.R.M. Graham, J. Chem. Phys. **114**, 3570 (2001).

² E. Gonzalez, C.M.L. Rittby, and W.R.M. Graham, J. Chem. Phys. in press.