DIRECT MEASUREMENTS OF THE FUNDAMENTAL ROTATIONAL TRANSITIONS OF CD AND 13CH ($X^2Π_g$)

D. T. HALFEN, L. M. ZIURYS, University of Arizona, Steward Observatory, Department of Chemistry Arizona Radio Observatory, Tucson, AZ 85721; J. C. PEARSON, AND B. J. DROUIN, Jet Propulsion Laboratory, Pasadena, CA 91109.

The $N = 1 \rightarrow 1$ and $N = 1 \rightarrow 2$ rotational transitions of CD, and the $N = 1 \rightarrow 1$ lines of 13CH have been measured in their 2Π_g ground electronic states using sub-mm direct absorption spectroscopy. The measurements below 600 GHz (CD: $N = 1 \rightarrow 1$ and 13CH: $N = 1 \rightarrow 1$) were carried out at Arizona, while those in the 900 GHz range were conducted at JPL (CD: $N = 1 \rightarrow 1$). The two radical species were created in an electrical discharge of either 18CH$_4$ or CD$_4$. Both lambda-doubling and hyperfine splittings were resolved in the spectra. The data were analyzed with a case(b) effective Hamiltonian, resulting in an improvement in the lambda-doubling and deuterium, proton, and 13C hyperfine constants. Highly accurate rest frequencies are now available for astronomical searches for these species. CH is an abundant and widespread interstellar molecule, and thus CD and 13CH should be of astrophysical interest.