HOW DIFFERENT ARE *ORTHO* AND *PARA* HYDROGEN? A COMPUTATIONAL EXAMINATION OF POTENTIALS, BOUND STATES, AND SCATTERING OF HYDROGEN COMPLEXES

KELLY J. HIGGINS, Spectral Sciences, Inc., Burlington, MA 01803; WILLIAM KLEMPERER, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.

The interaction between molecular hydrogen and other molecules is studied through *ab initio* calculations with a focus on differences in behavior between *ortho* and *para* hydrogen. These differences manifest themselves in various ways, including in the rotational spectra of complexes^{a,b} and in pressure broadening cross sections.^c Two specific systems, H₂-HCN and H₂-OCS, will be examined. For H₂-HCN, a new 4-D potential surface will be presented along with bound state and scattering calculations, while for H₂-OCS new calculations utilizing a previously presented potential^d will be discussed. These two systems display markedly different ground state geometries that lead to different behavior of the *ortho* and *para* hydrogen complexes. In addition to the specific systems a more general discussion will examine the effect of potential anisotropy and ground state geometry on the properties of hydrogen complexes and how the differences between *ortho* and *para* interactions can be used.

^aZ. Yu, et al., J. Chem. Phys. 127, 054305 (2007).

^bM. Ishiguro, et al., J. Chem. Phys. **115**, 5155 (2001).

^cM. Mengel, D.C. Flatin, and F. C. De Lucia, J. Chem. Phys. **112**, 4069 (2000).

^dK.J. Higgins, Z. Yu, and W. Klemperer, 62nd International Symposium on Molecular Spectroscopy (2007).