THE INFRARED SPECTRA OF BF3 CATION AND BF2OH CATION TRAPPED IN SOLID NEON

MARILYN E. JACOX and WARREN E. THOMPSON, Optical Technology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8441.

New, more detailed studies of the photoionization and Penning ionization of BF_3 trapped in solid neon have confirmed the earlier infrared spectroscopic identification of BF_2 and BF_2 cation and have yielded a revised assignment for the infrared absorptions of BF_3 cation. The position of the absorption attributed to ν_3 of that molecule is consistent with the distortion of the ground-state cation from D_{3h} symmetry because of strong vibronic interaction between levels of the \tilde{B} $^2E'$ state and E' levels of the \tilde{X} $^2A_2'$ ground state, as predicted by Haller and co-workers. The facile reaction of BF_3 with traces of H_2O desorbed from the walls of the vacuum system leads to the stabilization of sufficient BF_2OH for the identification of two vibrational fundamentals of BF_2OH cation.

^aM. E. Jacox and W. E. Thompson, J. Chem. Phys. 102, 4747 (1995).

^bE. Haller, H. Koppel, L. S. Cederbaum, W. von Niessen, and G. Bieri, J. Chem. Phys. 78, 1359 (1983).