DIFFUSION MONTE CARLO CALCULATIONS OF MINIMUM ENERGY PATHS FOR THE ISOTOPIC VARIANTS OF THE $CH_3^+ + H_2 \leftrightarrow CH_5^+ \leftrightarrow CH_3^+ + H_2$ REACTION

<u>CHARLOTTE E. HINKLE</u>, ANNE B. McCOY, Department of Chemistry, The Ohio State University, Columbus, OH 43210.

Protonated methane is of interest to astrochemists due to its presumed importance as a reaction intermediate in the reaction involving $CH_3^+ + HD$ within the interstellar medium. However, within the interstellar medium there is a nonstatistical H/D isotopic abundance observed for the isotopologues of CH_3^+ . Kinetic studies performed by Gerlich and co-workers determined that the reactions

$$CH_{3-n}D_{n}^{+} + HD \rightarrow CH_{4-n}D_{n+1}^{+} \rightarrow CH_{2-n}D_{n+1}^{+} + H_{2}$$
 (1)

have identical net rate constants regardless of the value of n.^{*a*} We have calculated zero-point corrected energies and wave functions of the $CH_3^+ + H_2$ system^{*b*} and its deuterated analogs as functions of the center of mass separation between CH_3^+ and H_2 , *R*. We can divide these simulations into distinct ranges of *R*; long-range interactions, complexation, and intermediate distances. Analysis of the wave functions associated with these three ranges of *R* allows us to study how zero-point energy influences the approach geometries that are sampled during low-energy collisions.

^aO. Asvany, S. Schlemmer, D. Gerlich, Astrophys. J. 617, 685 (2004).

^bC. E. Hinkle, A. B. McCoy, J. Phys. Chem. Lett. 1, 562 (2010).