ORTHO-PARA MIXING INTERACTION IN THE VINYL RADICAL DETECTED BY MILLIMETER-WAVE SPEC-TROSCOPY AND PREDICTION OF FAST *ORTHO-PARA* CONVERSION RATE

<u>KEIICHI TANAKA</u>, MASATO HAYASHI, MITSUHIKO OHTSUKI, KENSUKE HARADA, and TAKE-HIKO TANAKA, Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki, Higashiku, Fukuoka 812-8581, Japan.

Ortho-para mixing interaction due to the coupling of nuclear and electron spins was detected for the first time by millimeter-wave spectroscopy of deuterated vinyl radicals, H₂CCD and D₂CCD, of which the ground states are split by the tunneling motion of the α deuteron into two components 0⁺ and 0⁻, whose separations have been determined to be $\Delta E_0 = 1186.644(16)$ and 771.978(18) MHz, respectively. The observed tunneling-rotation spectra are significantly perturbed by the *othro-para* mixing interaction expressed by $\langle 0^{\pm} | H' | 0^{\mp} \rangle = (\delta a_{\rm F}^{(\beta)}/2) \mathbf{S} \cdot (\mathbf{I}_{\beta 1} - \mathbf{I}_{\beta 2})$, where $\mathbf{I}_{\beta 1}$ and $\mathbf{I}_{\beta 2}$ are spins of the two hydrogen nuclei in the β position and \mathbf{S} is the electron spin, which connects rotational levels in the 0⁺ and 0⁻ states, one being an *ortho* level and the other a *para* level. The $\delta a_{\rm F}^{(\beta)}$ constants for H₂CCD and D₂CCD have been determined to be 68.06(53) and 10.63(94) MHz, respectively, consistent each other within the isotopic mass relation. The *othro* and *para* states are mixed by about 0.097% and 0.0123% due to this interaction. ^a The $\delta a_{\rm F}$ constant for H₂CCH should be similar to that for H₂CCD because of the same probability density of the unpaired electron at the β protons, but could not be determined independently in our previous study. It is because the mixing of *para*- and *ortho*-levels of about 0.00044% is much smaller than that for H₂CCD due to the large tunneling splitting of $\Delta E_0 = 16271.8429(59)$ MHz.^b

The rate constant of *para* to *ortho* ($I_{\beta} = 0 \rightarrow 1$) conversion is predicted as $1.2 \times 10^5 \text{ s}^{-1} \text{ torr}^{-1}$ for H₂CCD, suggesting extremely rapid mutual conversion between *ortho* and *para* nuclear spin isomers of H₂CCD, which is more than 10^6 times faster compared with that in closed shell molecules such as H₂CO and H₂CCH₂.

^aK. Tanaka, M. Hayashi, M. Ohtsuki, K. Harada, T. Tanaka, J. Chem. Phys. 131, 111101 (2009).

^bK. Tanaka, M. Toshimitsu, K. Harada, T. Tanaka, J. Chem. Phys. 120, 3604 (2004).