THE ROTATION-TORSION SPECTRUM ${ }^{a} \mathrm{OF} \mathrm{CH}_{2} \mathrm{DOH}$

A. EL HILALI, L. H. COUDERT, LISA, CNRS/Universités Paris Est et Paris Diderot, 61 Avenue du Général de Gaulle, 94010 Créteil, France; L. MARGULES, R. MOTIYENKO, Laboratoire PhLAM, UMR 8523 CNRS, Bât. P5, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France; and S. KLEE, Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany.

Due to the asymmetry of the $\mathrm{CH}_{2} \mathrm{D}$ group, the internal rotation problem in the partially deuterated species of methanol $\mathrm{CH}_{2} \mathrm{DOH}$ is a complicated one as, unlike in the normal species $\mathrm{CH}_{3} \mathrm{OH}$, the inertia tensor depends on the angle of internal rotation. $\mathrm{The}_{\mathrm{CH}}^{2} \mathrm{DOH}$ species also displays a dense far infrared torsional spectrum difficult to assign. Recently 38 torsional subbands of $\mathrm{CH}_{2} \mathrm{DOH}$ have been identified, ${ }^{b}$ but for most of them there is neither an assignment nor an analysis of their rotational structure.
In this paper an analysis of the rotation-torsion spectrum of $\mathrm{CH}_{2} \mathrm{DOH}$ will be presented. The rotational structure of 23 torsional subbands have been assigned. These subbands are $\Delta v_{t} \geq 1$ perpendicular subbands with a value of v_{t}^{\prime} up to 10^{b} and values of K^{\prime} and $K^{\prime \prime}$ ranging from 0 to 9 . For all subbands, the Q-branch was assigned, for 3 subbands, the R - and P-branches could also be found. The results of the rotational analysis with an expansion in $J(J+1)$ of the new subbands and of already observed ones ${ }^{c}$ will be presented. When available, microwave lines within the lower torsional level, recorded in this work or already measured, ${ }^{d}$ were added to the data set.
A theoretical approach aimed at calculating the rotation-torsion energy levels has also been developed. It is based on an expansion in terms of rotation-torsion operators with C_{s} symmetry and accounts for the dependence of the inertia tensor on the angle of internal rotation. This approach will be used to carry out a preliminary global analyses of the wavenumbers and of the frequencies.

[^0]
[^0]: ${ }^{a}$ This work is supported by the ANR-08-BLAN- 0225 contract.
 ${ }^{b}$ Lauvergnat, Coudert, Klee, and Smirnov, J. Mol. Spec. 256 (2009) 204.
 ${ }^{c}$ Quade, Liu, Mukhopadhyay, and Su, J. Mol. Spec. 192 (1998) 378; and Mukhopadhyay, J. Mol. Struct. 695-696 (2004) 357.
 ${ }^{d}$ Liu and Quade, J. Mol. Spec. 146 (1991) 252; and Mukhopadhyay et al., J. Chem. Phys. 116 (2002) 3710.

