SUPERFLUID EFFECTS IN PARA-H2 CLUSTERS PROBED BY CO2 ROTATION-VIBRATION TRANSITIONS

HUI LI, ROBERT J. LE ROY, PIERRE-NICHOLAS ROY, Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada; A.R.W. MCKELLAR, Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada.

The prospect of directly observing superfluidity in para- H_2 is a tantalizing but elusive goal. Like 4He , para- H_2 is a light zero-spin boson. However, H_2 - H_2 intermolecular interactions, though weak, are stronger than He-He interactions, and hydrogen is a solid below about 14 K. This makes detection of superfluidity in bulk hydrogen problematical, to say the least. But there are still possibilities for para- H_2 in the form of clusters or in nano-confined environments, and superfluid transition temperatures as high as \sim 6 K have been predicted. Spectroscopic observations of $(para-H_2)_N$ - CO_2 clusters were at first very difficult to interpret for N > 5. However, with the help of path integral Monte Carlo simulations and an accurate new H_2 - CO_2 intermolecular potential surface which explicitly incorporates dependence on the CO_2 ν_3 asymmetric stretch, it is now possible to achieve a remarkably consistent picture of $(para-H_2)_N$ - CO_2 clusters in the size range $N = 1 \sim 20$. By combining the experimental spectroscopic measurements and theoretical simulations, we determine the size evolution of the superfluid response of the CO_2 -doped para- H_2 clusters, which peaks for the "magic" number N = 12.

^aV.L. Ginzburg and A.A. Sobyanin, *JETP Lett.* **15**, 343 (1972).

^bA.R.W. McKellar, Paper WH04, 63rd OSU International Symposium on Molecular Spectroscopy, June 16-20, 2008.

^cH. Li, P.-N. Roy, and R.J. Le Roy, *J. Chem. Phys.*, submitted.