MICROWAVE SPECTRA AND STRUCTURES OF H₂O-AgCl AND H₃N-AgCl.

N. R. WALKER, V. A. MIKHAILOV, S. J. HARRIS, F. J. ROBERTS AND A. C. LEGON, School of Chemistry, University of Bristol, BS8 1TS, U.K..

A Balle-Flygare FT-MW spectrometer coupled to a laser ablation source has been used to measure the pure rotational spectra of H_2O -AgCl and H_3N -AgCl. Both molecules are generated via laser ablation (532 nm) of a metal rod in the presence of CCl_4 , argon, a low partial pressure of H_2O or NH_3 and are stabilized by supersonic expansion. Rotational constants and centrifugal distortion constants have been measured for eight isotopologues of H_2O -AgCl with substitutions at the silver, chlorine, oxygen and hydrogen atoms. B_0 and C_0 have been independently determined for six isotopologues and the spectra are consistent with a linear arrangement of oxygen, silver and chlorine atoms. The structure is either C_{2v} planar at equilibrium or C_S pyramidal but with a low potential-energy barrier to planarity such that the v=0 and 1 states associated with the motion that inverts the configuration at the O atom are well separated. Preliminary data from a study of H_3N -AgCl will also be presented. Several transitions have been observed and tentatively assigned to hyperfine components of the 2_{02} - 1_{01} , 3_{03} - 2_{02} and 4_{04} - 3_{03} transitions of H_3N - 107 Ag 35 Cl and H_3N - 109 Ag 35 Cl. These data are consistent with a C_{3v} structure.