THE OPTICAL STARK SPECTRUM OF THE $A^3\Phi_1 - X^3\Phi_1$ BAND SYSTEM OF IRIDIUM MONOFLUORIDE, IrF

XIULIAN ZHUANG AND TIMOTHY C. STEIMLE, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287; COLAN LINTON, Center for Lasers, Atomic and Molecular Sciences and Physics Department, University of New Brunswick, Fredericton, NB Canada E3B 5A3.

Recently the New Brunswick group\(^5\) reported on the field-free detection and analysis of the $A^3\Phi_1 - X^3\Phi_1$ band system of IrF. Here we report on the analysis $Q(4)(15922 \text{ cm}^{-1})$ branch feature of the $(1,0)$ band of the ^{197}IrF isotopologue of that system recorded at field strengths of up to 3000 V/cm. The spectra are surprisingly complex at the achieved resolution of 40 MHz due to the presence of both the $^{197}\text{Ir}(I=3/2)$ and $^{19}\text{F}(I=1/2)$ magnetic hyperfine splitting. The determined permanent electric dipole moment, μ_{el}, for the $X^3\Phi_1$ state is compared with that recently determined\(^4\) for the $X^3\Phi_1$ state of isovalent CoF. The trend in μ_{el} amongst the ground states of IrF, IrC and IrN\(^-\) will be discussed. Finally, a simple molecular orbital correlation diagram will be used to rationalize the change in μ_{el} upon excitation from the $X^3\Phi_1$ to $A^3\Phi_1$ state.

