ANOMALOUS HYPERFINE STRUCTURE OF NSF$_3$ IN THE DEGENERATE VIBRATIONAL STATE $v_3=1$: LIFTING OF THE PARITY DEGENERACY BY THE FLUORINE SPIN-ROTATION INTERACTION

H. HARDER, S. MACHOLL, H. MAEDER, Institut für Physikalische Chemie, Universität Kiel, 24098 Kiel, Germany; L. FUSINA, Dipartimento di Chimica Fisica e Inorganica, Università di Bologna, 40136 Bologna, Italy; L. LOZIER, Department of Physics and Astronomy, University of British Columbia, BC V6T 1Z1, Canada.

For the principal isotopomer 14N32S19F$_3$ of thiacyl trifluoride in the degenerate fundamental state ($v_3=1$), the hyperfine structure has been investigated in the Q-branch spectrum between 8 and 26.5 GHz using microwave Fourier transform waveguide spectrometers with a resolution limit of ≈ 30 kHz. In addition to I-type doubling spectra and I-type resonance transitions with $\Delta k = l = \pm 2$, perturbation-allowed spectra were measured with $\Delta(k - l) = \pm 3$, ± 6. The range in J was from 13 to 61; for the lower states, $kl=\pm 3, \pm 2, \pm 1, 0, \pm 1$. For all the transitions, the hyperfine patterns observed are predicted to be doubles when only the nitrogen quadrupole Hamiltonian H_N^Q is taken into account. Doubles were indeed measured for transitions with $\Gamma_{RV}=A_1 \leftrightarrow A_2$, where Γ_{RV} is the rovibrational symmetry. However, when $\Gamma_{RV}=E \leftrightarrow E$, triplets and quartets were observed in addition to doubles. These anomalous hyperfine patterns are shown to be due to the $\Delta k = \pm 1$ and $\Delta k = \pm 2$ matrix elements of the fluorine spin-rotation Hamiltonian H_F^S characterized by the fluorine spin-rotation constants $c(1) = c_{xx} + c_{yy}$ and $c(2) = c_{yy} - c_{xx}$, respectively. These terms in H_F^S lift the parity degeneracy for $\Gamma_{RV}=E$. The rovibrational Hamiltonian H_{RV} was adopted from an earlier partner study. A good fit to the hyperfine data was obtained with a standard deviation of 3.1 kHz. In the fitting process, 12 rovibrational parameters were varied, while the remaining constants in H_{RV} were left at the values of Ref. (1). In addition, 8 hyperfine parameters were determined: four in H_N^Q, and two in H_F^S. It was found that $c(1) = 7.48(24)$ kHz and $c(2) = 2.423(22)$ kHz. This determination of $|c(1)|$ is the first to be reported based on frequency measurements. The key to the observation of the parity doubling lies in the severe mixing of the eigenvectors of basis vectors with several different values of kl as a result of the clustering of rovibrational levels at low K.