SUB-DOPPLER SPECTROSCOPY OF MIXED STATE LEVELS IN CH ${ }_{2}$

CHIH-HSUAN CHANG, GREGORY E. HALL AND TREVOR J. SEARS, Chemistry Department, Brookhaven National Laboratory, Upton, New York, 11973.

Saturation dip spectroscopy has been used to measure rovibronic transitions in the $\tilde{b}^{1} B_{1} \leftarrow \tilde{a}^{1} A_{1}$ band system of CH_{2} at sub-Doppler resolution. The radical was made by 308 nm excimer laser photolysis of a slowly flowing, low-pressure, sample of ketene $\left(\mathrm{CH}_{2} \mathrm{CO}\right)$, optionally with added inert buffer gas. Typical observed linewidths in the pure precursor are approximately 8 MHz (FWHM), due to a combination of collisional lifetime and pump-probe beam crossing angle. Due to the non-zero ${ }^{1} \mathrm{H}$ proton nuclear spin, CH_{2} exists as two distinct variants, ortho- CH_{2} with $I_{H}=1$ and para- CH_{2} with $I_{H}=0$. In ortho- CH_{2}, each rotational level consists of a triplet of hyperfine components corresponding to levels with $F=J, J \pm 1$. Most singlet CH_{2} transitions show unresolved hyperfine structure in our experiment, since the largest splitting is due to \mathbf{I}.J coupling, typically of the order of kHz . However, a small number of rotational levels in the $v=0$ level of the lower \tilde{a} state are known to be perturbed by accidentally near degenerate ${ }^{a} \tilde{X}^{3} B_{1}$-state levels via spin-orbit coupling. Spectra involving such levels in ortho- CH_{2} exhibit resolvable triplet, I.S, hyperfine splittings, with the splittings providing a direct measure of triplet state character of the level. We have measured hyperfine splittings for a number of pairs of perturbed levels confirming and refining previous estimates of the singlet-triplet mixing coefficients. Measurements of the pressure-dependent saturation recovery rates with different collision partners can give new insights into dephasing, velocity-changing and inelastic collisions relevant to pressure broadening and intersystem crossing mechanisms.
Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences.

[^0]
[^0]: ${ }^{a}$ U. Bley and F. Temps, J. Chem. Phys. 98, 1058-1072 (1993)

