PHOTOELECTRON AND PHOTOION SPECTROSCOPY OF SCANDIUM-METHYLBENZENE COMPLEXES

<u>JUNG SUP LEE</u>, YUXIU LEI, SUDESH KUMARI, and DONG-SHENG YANG, Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055.

We report here single UV photon pulsed field ionization-zero electron kinetic energy (PFI-ZEKE) photoelectron spectra of jet-cooled Sc-[C₆H_{6-n}(CH₃)_n] (n = 2, 3, and 6) complexes and two-photon IR-UV photoionization spectra of Sc-[C₆(CH₃)₆]. Adiabatic ionization energies and low-frequency metal-ligand and ligand-based vibrational modes are measured from the single-photon PFI-ZEKE spectra, and C-H stretching frequencies are determined from the two-photon IR-UV spectra. The ionization energies of these Sc complexes decrease with increasing methyl substations of hydrogen in the benzene ring. The C-H frequencies of hexamethylbenzene are significantly shifted due to Sc coordination. The ZEKE transitions of the di- and tri-methyl substituted complexes are sharp, while those of the hexa-methyl species are rather broad. The observed electronic transitions are ${}^{1}A \leftarrow {}^{2}A$ for Sc-[1,4-C₆H₄(CH₃)₂] (C₂), ${}^{1}A' \leftarrow {}^{2}A'$ for Sc-[1,3,5-C₆H₃(CH₃)₃] (C_s), and ${}^{1}A_{1} \leftarrow {}^{2}A_{1}$ for Sc-[C₆(CH₃)₆] (C_{2v}).