THE $J=1 \leftarrow 0$ ROTATIONAL TRANSITIONS OF ${ }^{12} \mathrm{CH}^{+},{ }^{13} \mathrm{CH}^{+}$and ${ }^{12} \mathrm{CD}^{+}$

T. AMANO, Department of Chemistry and Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1.

The CH^{+}ion is the first molecular ion identified in interstellar space. Dunham ${ }^{a}$ detected a couple of unidentified lines in near-UV, and later Douglas and Herzberg ${ }^{b}$ identified them based on their laboratory observations. The electronic spectra have been investigated extensively. On the other hand, the pure rotational transitions are less extensively studied. Cernicharo et al ${ }^{c}$ reported the interstellar detection of the $J=2-1,3-2$, and 4-3 transitions in NGC 7027. Pearson and Drouin ${ }^{d}$ reported the laboratory observation of the $J=1-0$ line of ${ }^{12} \mathrm{CH}^{+}$at 835078.950 MHz and, based on this frequency, predicted the frequencies for ${ }^{13} \mathrm{CH}^{+}$and CD^{+}. The predicted ${ }^{13} \mathrm{CH}^{+}$ frequency led to identification of the interstellar line ${ }^{e}$. In this talk, we present a new set of measurements of the $J=1-0$ lines for the normal species together with the ${ }^{13} \mathrm{C}$ and D isotopic species. The overwhelming evidences obtained in our experiments support the new identifications.
An extended negative glow discharge in a gas mixture of CH_{4} ($\sim 0.5 \mathrm{mTorr}$) diluted in He ($\sim 60 \mathrm{mTorr}$) was used for production of CH^{+}with the discharge current of about 15 mA . Axial magnetic filed up to 160 Gauss was applied. The normal species line exhibited a surprisingly large Zeeman splitting for a ${ }^{1} \Sigma$ molecule. The ${ }^{13} \mathrm{CH}^{+}$line showed the spin-rotation hyperfine splitting, and at higher field of 150 Gauss an unresolved lineshape was exhibited due to combined hfs and Zeeman splittings. The spin-rotation splitting in the normal species was negligibly small. The CD^{+}line showed much smaller Zeeman and spin-rotation splittings, as expected. Details of the mechanism to induce such Zeeman effect and the spin-rotation interaction will be presented. The transition frequencies for these $J=1-0$ lines are: $835137.498(20) \mathrm{MHz}$ and $453521.847(20) \mathrm{MHz}$ for ${ }^{12} \mathrm{CH}^{+}$and CD^{+}, respectively. The transition frequencies for ${ }^{13} \mathrm{CH}^{+}$are $830216.680(50) \mathrm{MHz}(F=3 / 2-1 / 2)$ and $830214.961(50) \mathrm{MHz}(F=1 / 2-1 / 2)$. The uncertainties reflect possible errors in correcting the Zeeman shifts.

[^0]
[^0]: ${ }^{a}$ T. Dunham, Publ. Astron. Soc. Pac., 49, 26 (1937)
 ${ }^{b}$ A. E. Douglas and G. Herzberg, Astrophys. J. 94, 381 (1941)
 ${ }^{c}$ J. Cernicharo et al., Astrophys. J., 483, L65 (1997)
 ${ }^{d}$ J. C. Pearson and B. J. Drouin, Astrophys. J., 647, L83 (2006)
 ${ }^{e}$ E. Falgarone et al., Astrophys. J., 634, L49 (2005)

