THE $J = 1 \leftarrow 0$ ROTATIONAL TRANSITIONS OF ¹²CH⁺, ¹³CH⁺ and ¹²CD⁺

<u>T. AMANO</u>, Department of Chemistry and Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1.

The CH⁺ ion is the first molecular ion identified in interstellar space. Dunham^{*a*} detected a couple of unidentified lines in near-UV, and later Douglas and Herzberg^{*b*} identified them based on their laboratory observations. The electronic spectra have been investigated extensively. On the other hand, the pure rotational transitions are less extensively studied. Cernicharo *et al*^{*c*} reported the interstellar detection of the *J*=2-1, 3-2, and 4-3 transitions in NGC 7027. Pearson and Drouin^{*d*} reported the laboratory observation of the *J*=1-0 line of ¹²CH⁺ at 835078.950 MHz and, based on this frequency, predicted the frequencies for ¹³CH⁺ and CD⁺. The predicted ¹³CH⁺ frequency led to identification of the interstellar line^{*e*}. In this talk, we present a new set of measurements of the *J*=1-0 lines for the normal species together with the ¹³C and D isotopic species. The overwhelming evidences obtained in our experiments support the new identifications.

An extended negative glow discharge in a gas mixture of CH₄ (~ 0.5 mTorr) diluted in He (~ 60 mTorr) was used for production of CH⁺ with the discharge current of about 15 mA. Axial magnetic filed up to 160 Gauss was applied. The normal species line exhibited a surprisingly large Zeeman splitting for a ${}^{1}\Sigma$ molecule. The 13 CH⁺ line showed the spin-rotation hyperfine splitting, and at higher field of 150 Gauss an unresolved lineshape was exhibited due to combined hfs and Zeeman splittings. The spin-rotation splitting in the normal species was negligibly small. The CD⁺ line showed much smaller Zeeman and spin-rotation splittings, as expected. Details of the mechanism to induce such Zeeman effect and the spin-rotation interaction will be presented. The transition frequencies for these J = 1 - 0 lines are: 835137.498(20) MHz and 453521.847(20) MHz for 12 CH⁺ and CD⁺, respectively. The transition frequencies for 13 CH⁺ are 830216.680(50) MHz (F = 3/2 - 1/2) and 830214.961(50) MHz (F = 1/2 - 1/2). The uncertainties reflect possible errors in correcting the Zeeman shifts.

^aT. Dunham, *Publ. Astron. Soc. Pac.*, **49**, 26 (1937)

^bA. E. Douglas and G. Herzberg, Astrophys. J. 94, 381 (1941)

^cJ. Cernicharo *et al.*, *Astrophys. J.*, **483**, L65 (1997)

^dJ. C. Pearson and B. J. Drouin, Astrophys. J., 647, L83 (2006)

^eE. Falgarone et al., Astrophys. J., 634, L49 (2005)