THE PHOTOELECTRON ANGULAR DISTRIBUTION AS A PROBE OF ENERGETICALLY INDISTINGUISABLE CHANNELS IN PHOTODETACHMENT

MATTHEW VAN DUZOR, FOSTER MBAIWA, JIE WIE and RICHARD MABBS, Department of Chemistry, Washington University, One Brookings Dr., Campus Box 1134 Saint Louis, Missouri 63130, USA.

Photoelectron imaging measurements of I⁻ CH₃CN are presented from the lowest energy $I({}^{2}P_{3/2})$ ·CH₃CN channel threshold to 0.3 eV above the $I({}^{2}P_{1/2})$ ·CH₃CN threshold. Excitation of the cluster just below the latter threshold leads to competition between direct detachment and the production of a dipole-bound state $[I({}^{2}P_{1/2}) \cdot CH_3CN]^-$. Subsequent relaxation of the I moiety $({}^{2}P_{1/2} \rightarrow {}^{2}P_{3/2})$ occurs via autodetachment of the dipole bound electron. However, the autodetached electrons are energetically equivalent to those directly detached via the ${}^{2}P_{3/2}$ channel. While the photoelectron spectrum is insensitive to this phenomenon, the kinetic energy dependence of the photoelectron angular distribution (PAD) of the ${}^{2}P_{3/2}$ channel reflects these dynamics. Dramatic changes are observed within a 100 meV window of the $I({}^{2}P_{1/2}) \cdot CH_3CN$ threshold. Although previously unreported, further results are presented that show sharp changes in the PAD are relatively common in I⁻ ·X cluster anions (X=polar molecule).