UNDERSTANDING INTRAMOLECULAR VIBRATIONAL REDISTRIBUTION BY THE ROVIBRATIONAL ANALYSIS OF HIGH RESOLUTION INFRARED SPECTRA: THE CASE OF CHD_2I

<u>CARINE MANCA TANNER</u>, SIEGHARD ALBERT, and MARTIN QUACK, *Physical Chemistry*, *ETH Zurich*, *Switzerland*.

In our group we pursue two experimental approaches to investigate Intramolecular Vibrational Redistribution $(IVR)^a$: this process can be studied by time-resolved femtosecond pump-probe experiments, or the corresponding time-dependent quantum dynamics can be obtained from stationary spectra in the IR at high frequency resolution by a time-dependent analysis using the underlying Hamiltonian and time evolution operator^{*a*}. Recent work in our group^{*b*} has shown that CH₃I and its deuterated isotopomers have different IVR-times, revealing different intramolecular coupling schemes for the initially excited vibrational levels. The present work is part of a larger effort to understand IVR in these molecules on the basis of high resolution spectra in the 500-12000 cm⁻¹ region. In previous work we have analyzed the strong Fermi-resonance coupling between the CH-stretching and bending modes in CHD₂I at modest resolution, demonstrating very fast redistribution times on the order of 100 fs^{*c*}. We refer to this recent paper for the past literature on the topic. Here we present detailed rovibrational analysis of ν_1 and several other fundamentals of CHD₂I recorded with our high resolution FTIR spectrometer Bruker ZP2001^{*d*} with resolutions up to 0.0008 cm⁻¹. We discuss our new results in relation to our recent work on the overtone spectra and dynamics and to the femtosecond pump-probe results.

^aM. Quack, Chapter 27 in Fentosecond Chemistry, J. Manz and L. Woeste, eds. Verlag Chemie (Weinheim, 1995).

^bV. Krylov, M. Nikitchenko, M. Quack, and G. Seyfang, *Proc. SPIEE* **5337**, 178 (2004); V. Krylov, A. Kushnarenko, E. Miloglyadov, M. Quack, and G. Seyfang, *Proc. SPIEE* **6460**, 64601D-1 (2007).

^cV. Horka, M. Quack, and M. Willeke, *Mol. Phys.* **106**, 1303 (2008).

^dS. Albert and M. Quack, ChemPhysChem 8, 1271 (2007).