OBSERVING A COLUMN-DEPENDENT ζ IN THE HORSEHEAD PDR

P.B. Rimmer, Department of Physics, Ohio State University, Columbus, OH 43210; O. Morata, Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 11677, Taiwan; E. Roueff, Observatoire de Paris, LUTH and Université Denis Diderot, Place J. Janssen 92190 Meudon, France; E. Herbst, Departments of Astronomy, Physics, and Chemistry, Ohio State University, Columbus, OH 43210.

The molecules CCH, C$_3$H, HCO$^+$, and HC$_3$N have been observed at the edge of the Horsehead Nebula in abundances far higher than those predicted by Photodissociation Region (PDR) modelsa. Using a column-dependent cosmic ray ionization rate (ζ)b, we model the edge of the Horsehead Nebula as a one-dimensional nearly-"edge-on" heterogeneous PDR with temperature ranging from 15-250 K, number density from $10^3 - 5 \times 10^5$ cm$^{-3}$, and $\zeta = 10^{-16} - 10^{-14}$ s$^{-1}$. The resulting abundances for the molecules listed above are much closer to the observed abundances. In this talk, we will discuss this method, its results, and the usefulness of incorporating a column-dependent ζ in astrochemical PDR models, especially in the advent of ALMA.
