FOURIER TRANSFORM MICROWAVE SPECTRUM OF AICCH ($\mathrm{X}^1\Sigma^+$) AND ITS 13 C/D ISOTOPOLOGUES

M. SUN, Department of Chemistry, Department of Astronomy, and Steward Observatory, University of Arizona, Tucson, AZ 85721; D. J. CLOUTHIER, Department of Chemistry, University of Kentucky, Lexington, KY 40506; and L. M. ZIURYS, Department of Chemistry, Department of Astronomy, and Steward Observatory, University of Arizona, Tucson, AZ 85721.

The microwave spectrum of AlCCH $(X^1\Sigma^+)$ has been measured using Fourier transform microwave (FTMW) techniques in the frequency range of 9-40 GHz. This molecule was created in a supersonic expansion by the reaction of trimethyl aluminum, Al(CH₃)₃, and acetylene, C_2H_2 , or methane, CH_4 , diluted in argon carrier gas, using a pulsed nozzle coupled with a dc discharge. Spectra of Al¹²C¹³CH, Al¹³C¹²CH, Al¹³C¹³CH, Al¹²C¹²CD have also been recorded. From these data, rotational constants and Al and D hyperfine parameters have been determined, as well as the $r_m^{(1)}$ structure. AlCCH is a model system for heteroatom dicarbide species.