FOURIER TRANSFORM INFRARED SPECTROSCOPY OF THE H_2F^+ ν_1 , ν_3 AND ν_2 BANDS

<u>R. FUJIMORI</u>, Y. HIRATA, K. KAWAGUCHI, Department of Chemistry, Faculty of Science, Okayama University, 3-1-1, Tsushima-Naka, Okayama 700-8530, JAPAN; I. MORINO, Satellite Remote Sensing Research Section, Center for Global Environmental Research, National Institute for Environmental Studies Onogawa 16-2, Tsukuba, Ibaraki 305-8506, JAPAN.

Since HF is known as interstellar species, the protonated HF may exist with detectable abundance. Vibration-rotation spectra of H_2F^+ ν_1 and ν_3 bands were studied by infrared laser spectroscopy^a. The ν_2 band and pure rotational spectra have not been reported. In this study, we report FTIR spectroscopy of H_2F^+ ν_1 , ν_3 and ν_2 bands. The ion was produced with hollow cathode discharge in F₂. He and H₂ mixture. A simultaneous analysis of FT data combined with laser spectroscopic data was curried out for ν_1 and ν_3 bands, to determine ground state molecular constants. Absorption lines in the ν_2 region were assigned by using the ground state combination differences. Determined molecular constants can be used to predict pure rotational transition frequencies.

^aE. Schäfer and R. Saykally, J. Chem. Phys. 81, 15 (1984)